Categories: AI/ML News

Alternate framework for distributed computing tames Big Data’s ever growing costs

The sheer volume of ‘Big Data’ produced today by various sectors is beginning to overwhelm even the extremely efficient computational techniques developed to sift through all that information. But a new computational framework based on random sampling looks set to finally tame Big Data’s ever-growing communication, memory and energy costs into something more manageable.
AI Generated Robotic Content

Share
Published by
AI Generated Robotic Content

Recent Posts

An ‘Intimacy Crisis’ Is Driving the Dating Divide

In his book The Intimate Animal, sex and relationships researcher Justin Garcia says people have…

23 mins ago

New fire just dropped: ComfyUI-CacheDiT ⚡

ComfyUI-CacheDiT brings 1.4-1.6x speedup to DiT (Diffusion Transformer) models through intelligent residual caching, with zero…

23 hours ago

A Beginner’s Reading List for Large Language Models for 2026

  The large language models (LLMs) hype wave shows no sign of fading anytime soon:…

23 hours ago

How Clarus Care uses Amazon Bedrock to deliver conversational contact center interactions

This post was cowritten by Rishi Srivastava and Scott Reynolds from Clarus Care. Many healthcare…

23 hours ago

Build intelligent employee onboarding with Gemini Enterprise

Employee onboarding is rarely a linear process. It’s a complex web of dependencies that vary…

23 hours ago

Epstein Files Reveal Peter Thiel’s Elaborate Dietary Restrictions

The latest batch of Jeffrey Epstein files shed light on the convicted sex offender’s ties…

1 day ago