A new neural machine code to program reservoir computers
Reservoir computing is a promising computational framework based on recurrent neural networks (RNNs), which essentially maps input data onto a high-dimensional computational space, keeping some parameters of artificial neural networks (ANNs) fixed while updating others. This framework could help to improve the performance of machine learning algorithms, while also reducing the amount of data required to adequately train them.
Neural networks are learning algorithms that approximate the solution to a task by training with available data. However, it is usually unclear how exactly they accomplish this. Two young Basel physicists have now derived mathematical expressions that allow one to calculate the optimal solution without training a network. Their results…
Parallelization techniques have become ubiquitous for accelerating inference and training of deep neural networks. Despite this, several operations are still performed in a sequential manner. For instance, the forward and backward passes are executed layer-by-layer, and the output of diffusion models is produced by applying a sequence of denoising steps.…