Categories: AI/ML News

Transparency is often lacking in datasets used to train large language models, study finds

In order to train more powerful large language models, researchers use vast dataset collections that blend diverse data from thousands of web sources. But as these datasets are combined and recombined into multiple collections, important information about their origins and restrictions on how they can be used are often lost or confounded in the shuffle.
AI Generated Robotic Content

Share
Published by
AI Generated Robotic Content

Recent Posts

SamsungCam UltraReal – Qwen-Image LoRA

Hey everyone, Just dropped the first version of a LoRA I've been working on: SamsungCam…

2 hours ago

40 Best Early Amazon Prime Day Deals on WIRED-Tested Gear (2025)

Amazon Prime Day is back, starting on October 7, but we’ve already found good deals…

3 hours ago

These little robots literally walk on water

HydroSpread, a breakthrough fabrication method, lets scientists build ultrathin soft robots directly on water. These…

3 hours ago

VHS filters work great with AI footage (WAN 2.2 + NTSC-RS)

submitted by /u/mtrx3 [link] [comments]

1 day ago

Algorithm Showdown: Logistic Regression vs. Random Forest vs. XGBoost on Imbalanced Data

Imbalanced datasets are a common challenge in machine learning.

1 day ago

Unlock global AI inference scalability using new global cross-Region inference on Amazon Bedrock with Anthropic’s Claude Sonnet 4.5

Organizations are increasingly integrating generative AI capabilities into their applications to enhance customer experiences, streamline…

1 day ago