Categories: AI/ML News

Machine-learning models help discover a material for film capacitors with record-breaking performance

The Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and several collaborating institutions have successfully demonstrated a machine-learning technique to accelerate the discovery of materials for film capacitors—crucial components in electrification and renewable energy technologies. The technique was used to screen a library of nearly 50,000 chemical structures to identify a compound with record-breaking performance.
AI Generated Robotic Content

Share
Published by
AI Generated Robotic Content

Recent Posts

Can “Safe AI” Companies Survive in an Unrestrained AI Landscape?

TL;DR A conversation with 4o about the potential demise of companies like Anthropic. As artificial…

6 hours ago

Large language overkill: How SLMs can beat their bigger, resource-intensive cousins

Whether a company begins with a proof-of-concept or live deployment, they should start small, test…

7 hours ago

14 Best Planners: Weekly and Daily Notebooks & Accessories (2024)

Digital tools are not always superior. Here are some WIRED-tested agendas and notebooks to keep…

7 hours ago

5 Tools for Visualizing Machine Learning Models

Machine learning (ML) models are built upon data.

1 day ago

AI Systems Governance through the Palantir Platform

Editor’s note: This is the second post in a series that explores a range of…

1 day ago

Introducing Configurable Metaflow

David J. Berg*, David Casler^, Romain Cledat*, Qian Huang*, Rui Lin*, Nissan Pow*, Nurcan Sonmez*,…

1 day ago