Categories: AI/ML News

Machine learning algorithm enables faster, more accurate predictions on small tabular data sets

Filling gaps in data sets or identifying outliers—that’s the domain of the machine learning algorithm TabPFN, developed by a team led by Prof. Dr. Frank Hutter from the University of Freiburg. This artificial intelligence (AI) uses learning methods inspired by large language models. TabPFN learns causal relationships from synthetic data and is therefore more likely to make correct predictions than the standard algorithms that have been used up to now.
AI Generated Robotic Content

Share
Published by
AI Generated Robotic Content

Recent Posts

Chroma Radiance, Mid training but the most aesthetic model already imo

submitted by /u/Different_Fix_2217 [link] [comments]

10 hours ago

From human clicks to machine intent: Preparing the web for agentic AI

For three decades, the web has been designed with one audience in mind: People. Pages…

11 hours ago

Best GoPro Camera (2025): Compact, Budget, Accessories

You’re an action hero, and you need a camera to match. We guide you through…

11 hours ago

What tools would you use to make morphing videos like this?

submitted by /u/nikitagent [link] [comments]

1 day ago

Bias after Prompting: Persistent Discrimination in Large Language Models

A dangerous assumption that can be made from prior work on the bias transfer hypothesis…

1 day ago

Post-Training Generative Recommenders with Advantage-Weighted Supervised Finetuning

Author: Keertana Chidambaram, Qiuling Xu, Ko-Jen Hsiao, Moumita Bhattacharya(*The work was done when Keertana interned…

1 day ago