Scientists just made atoms talk to each other inside silicon chips
Researchers at UNSW have found a way to make atomic nuclei communicate through electrons, allowing them to achieve entanglement at scales used in today’s computer chips. This breakthrough brings scalable, silicon-based quantum computing much closer to reality.
Researchers have developed the first in-sensor processor that could be integrated into commercial silicon imaging sensor chips -- known as complementary metal-oxide-semiconductor (CMOS) image sensors -- that are used in nearly all commercial devices that need capture visual information, including smartphones.
Diraq has shown that its silicon-based quantum chips can maintain world-class accuracy even when mass-produced in semiconductor foundries. Achieving over 99% fidelity in two-qubit operations, the breakthrough clears a major hurdle toward utility-scale quantum computing. Silicon’s compatibility with existing chipmaking processes means building powerful quantum processors could become both cost-effective…
Bill Dally — one of the world’s foremost computer scientists and head of NVIDIA’s research efforts — will describe the forces driving accelerated computing and AI in his keynote address at Hot Chips, an annual gathering of leading processor and system architects. Dally will detail advances in GPU silicon, systems…