Breakthrough optical processor lets AI compute at the speed of light
Researchers at Tsinghua University developed the Optical Feature Extraction Engine (OFE2), an optical engine that processes data at 12.5 GHz using light rather than electricity. Its integrated diffraction and data preparation modules enable unprecedented speed and efficiency for AI tasks. Demonstrations in imaging and trading showed improved accuracy, lower latency, and reduced power demand. This innovation pushes optical computing toward real-world, high-performance AI.
Researchers have developed a fast and accurate flexible optical skin that can be used to read Braille. The advance could not only improve access to information for people who are blind but also help move us closer to a future where accessible and adaptable technology can benefit everyone.
Partial differential equations (PDEs) are a class of mathematical problems that represent the interplay of multiple variables, and therefore have predictive power when it comes to complex physical systems. Solving these equations is a perpetual challenge, however, and current computational techniques for doing so are time-consuming and expensive.
Many modern artificial intelligence (AI) applications, such as surgical robotics and real-time financial trading, depend on the ability to quickly extract key features from streams of raw data. This process is currently bottlenecked by traditional digital processors. The physical limits of conventional electronics prevent the reduction in latency and the…