Scientists found a way to cool quantum computers using noise
Quantum computers need extreme cold to work, but the very systems that keep them cold also create noise that can destroy fragile quantum information. Scientists in Sweden have now flipped that problem on its head by building a tiny quantum refrigerator that actually uses noise to drive cooling instead of fighting it. By carefully steering heat at unimaginably small scales, the device can act as a refrigerator, heat engine, or energy amplifier inside quantum circuits.
Computer scientists have succeeded in developing a method for systematically finding the optimal quantum operation sequence for a quantum computer. They have developed a systematic method that applies optimal control theory (GRAPE algorithm) to identify the theoretically optimal sequence from among all conceivable quantum operation sequences. This method is expected…
A research team has created a quantum logic gate that uses fewer qubits by encoding them with the powerful GKP error-correction code. By entangling quantum vibrations inside a single atom, they achieved a milestone that could transform how quantum computers scale.
A multinational team has cracked a long-standing barrier to reliable quantum computing by inventing an algorithm that lets ordinary computers faithfully mimic a fault-tolerant quantum circuit built on the notoriously tricky GKP bosonic code, promising a crucial test-bed for future quantum hardware.