Categories: FAANG

3D Shape Tokenization

We introduce Shape Tokens, a 3D representation that is continuous, compact, and easy to integrate into machine learning models. Shape Tokens serve as conditioning vectors, representing shape information within a 3D flow-matching model. This flow-matching model is trained to approximate probability density functions corresponding to delta functions concentrated on the surfaces of 3D shapes. By incorporating Shape Tokens into various machine learning models, we can generate new shapes, convert images to 3D, align 3D shapes with text and images, and render shapes directly at variable…
AI Generated Robotic Content

Recent Posts

SamsungCam UltraReal – Qwen-Image LoRA

Hey everyone, Just dropped the first version of a LoRA I've been working on: SamsungCam…

8 hours ago

40 Best Early Amazon Prime Day Deals on WIRED-Tested Gear (2025)

Amazon Prime Day is back, starting on October 7, but we’ve already found good deals…

9 hours ago

These little robots literally walk on water

HydroSpread, a breakthrough fabrication method, lets scientists build ultrathin soft robots directly on water. These…

9 hours ago

VHS filters work great with AI footage (WAN 2.2 + NTSC-RS)

submitted by /u/mtrx3 [link] [comments]

1 day ago

Algorithm Showdown: Logistic Regression vs. Random Forest vs. XGBoost on Imbalanced Data

Imbalanced datasets are a common challenge in machine learning.

1 day ago

Unlock global AI inference scalability using new global cross-Region inference on Amazon Bedrock with Anthropic’s Claude Sonnet 4.5

Organizations are increasingly integrating generative AI capabilities into their applications to enhance customer experiences, streamline…

1 day ago