Categories: FAANG

Accelerating LLM Inference on NVIDIA GPUs with ReDrafter

Accelerating LLM inference is an important ML research problem, as auto-regressive token generation is computationally expensive and relatively slow, and improving inference efficiency can reduce latency for users. In addition to ongoing efforts to accelerate inference on Apple silicon, we have recently made significant progress in accelerating LLM inference for the NVIDIA GPUs widely used for production applications across the industry.
Earlier this year, we published and open sourced Recurrent Drafter (ReDrafter), a novel approach to speculative decoding that achieves state of the art…
AI Generated Robotic Content

Recent Posts

New fire just dropped: ComfyUI-CacheDiT ⚡

ComfyUI-CacheDiT brings 1.4-1.6x speedup to DiT (Diffusion Transformer) models through intelligent residual caching, with zero…

15 hours ago

A Beginner’s Reading List for Large Language Models for 2026

  The large language models (LLMs) hype wave shows no sign of fading anytime soon:…

15 hours ago

How Clarus Care uses Amazon Bedrock to deliver conversational contact center interactions

This post was cowritten by Rishi Srivastava and Scott Reynolds from Clarus Care. Many healthcare…

15 hours ago

Build intelligent employee onboarding with Gemini Enterprise

Employee onboarding is rarely a linear process. It’s a complex web of dependencies that vary…

15 hours ago

Epstein Files Reveal Peter Thiel’s Elaborate Dietary Restrictions

The latest batch of Jeffrey Epstein files shed light on the convicted sex offender’s ties…

16 hours ago

A tiny light trap could unlock million qubit quantum computers

A new light-based breakthrough could help quantum computers finally scale up. Stanford researchers created miniature…

16 hours ago