Categories: FAANG

Analyzing the Effect of Linguistic Similarity on Cross-Lingual Transfer: Tasks and Input Representations Matter

Cross-lingual transfer is a popular approach to increase the amount of training data for NLP tasks in a low-resource context. However, the best strategy to decide which cross-lingual data to include is unclear. Prior research often focuses on a small set of languages from a few language families or a single task. It is still an open question how these findings extend to a wider variety of languages and tasks. In this work, we contribute to this question by analyzing cross-lingual transfer for 263 languages from a wide variety of language families. Moreover, we include three popular NLP tasks…
AI Generated Robotic Content

Recent Posts

New fire just dropped: ComfyUI-CacheDiT ⚡

ComfyUI-CacheDiT brings 1.4-1.6x speedup to DiT (Diffusion Transformer) models through intelligent residual caching, with zero…

14 hours ago

A Beginner’s Reading List for Large Language Models for 2026

  The large language models (LLMs) hype wave shows no sign of fading anytime soon:…

14 hours ago

How Clarus Care uses Amazon Bedrock to deliver conversational contact center interactions

This post was cowritten by Rishi Srivastava and Scott Reynolds from Clarus Care. Many healthcare…

14 hours ago

Build intelligent employee onboarding with Gemini Enterprise

Employee onboarding is rarely a linear process. It’s a complex web of dependencies that vary…

14 hours ago

Epstein Files Reveal Peter Thiel’s Elaborate Dietary Restrictions

The latest batch of Jeffrey Epstein files shed light on the convicted sex offender’s ties…

15 hours ago

A tiny light trap could unlock million qubit quantum computers

A new light-based breakthrough could help quantum computers finally scale up. Stanford researchers created miniature…

15 hours ago