Categories: FAANG

BayesCNS: A Unified Bayesian Approach to Address Cold Start and Non-Stationarity in Search Systems at Scale

Information Retrieval (IR) systems used in search and recommendation platforms frequently employ Learning-to-Rank (LTR) models to rank items in response to user queries. These models heavily rely on features derived from user interactions, such as clicks and engagement data. This dependence introduces cold start issues for items lacking user engagement and poses challenges in adapting to non-stationary shifts in user behavior over time. We address both challenges holistically as an online learning problem and propose BayesCNS, a Bayesian approach designed to handle cold start and…
AI Generated Robotic Content

Recent Posts

Everyone Has Given Up on AI Safety, Now What?

The End of the AI Safety DebateFor years, a passionate contingent of researchers, ethicists, and…

4 hours ago

The rise of browser-use agents: Why Convergence’s Proxy is beating OpenAI’s Operator

A new wave of AI-powered browser-use agents is emerging, promising to transform how enterprises interact…

5 hours ago

Elon Musk Threatens FBI Agents and Air Traffic Controllers With Forced Resignation If They Don’t Respond to an Email

Employees throughout the federal government have until 11:59pm ET Monday to detail five things they…

5 hours ago

How to get a robot collective to act like a smart material

Researchers are blurring the lines between robotics and materials, with a proof-of-concept material-like collective of…

5 hours ago

Understanding RAG Part VI: Effective Retrieval Optimization

Be sure to check out the previous articles in this series: •

1 day ago

PR Agencies in the Age of AI

TL;DR We compared Grok 3 and o3-mini’s results on this topic. They both passed. Since…

1 day ago