Categories: FAANG

Benign, Tempered, or Catastrophic: A Taxonomy of Overfitting

The practical success of overparameterized neural networks has motivated the recent scientific study of interpolating methods, which perfectly fit their training data. Certain interpolating methods, including neural networks, can fit noisy training data without catastrophically bad test performance, in defiance of standard intuitions from statistical learning theory. Aiming to explain this, a body of recent work has studied benign overfitting, a phenomenon where some interpolating methods approach Bayes optimality, even in the presence of noise. In this work we argue that while benign…
AI Generated Robotic Content

Recent Posts

Can “Safe AI” Companies Survive in an Unrestrained AI Landscape?

TL;DR A conversation with 4o about the potential demise of companies like Anthropic. As artificial…

4 hours ago

Large language overkill: How SLMs can beat their bigger, resource-intensive cousins

Whether a company begins with a proof-of-concept or live deployment, they should start small, test…

5 hours ago

14 Best Planners: Weekly and Daily Notebooks & Accessories (2024)

Digital tools are not always superior. Here are some WIRED-tested agendas and notebooks to keep…

5 hours ago

5 Tools for Visualizing Machine Learning Models

Machine learning (ML) models are built upon data.

1 day ago

AI Systems Governance through the Palantir Platform

Editor’s note: This is the second post in a series that explores a range of…

1 day ago

Introducing Configurable Metaflow

David J. Berg*, David Casler^, Romain Cledat*, Qian Huang*, Rui Lin*, Nissan Pow*, Nurcan Sonmez*,…

1 day ago