Categories: FAANG

Beyond Sensor Data: Foundation Models of Behavioral Data from Wearables Improve Health Predictions

Wearable devices record physiological and behavioral signals that can improve health predictions. While foundation models are increasingly used for such predictions, they have been primarily applied to low-level sensor data, despite behavioral data often being more informative due to their alignment with physiologically relevant timescales and quantities. We develop foundation models of such behavioral signals using over 2.5B hours of wearable data from 162K individuals, systematically optimizing architectures and tokenization strategies for this unique dataset. Evaluated on 57 health-related…
AI Generated Robotic Content

Recent Posts

10 Ways to Use Embeddings for Tabular ML Tasks

Embeddings — vector-based numerical representations of typically unstructured data like text — have been primarily…

6 hours ago

Over-Searching in Search-Augmented Large Language Models

Search-augmented large language models (LLMs) excel at knowledge-intensive tasks by integrating external retrieval. However, they…

6 hours ago

How Omada Health scaled patient care by fine-tuning Llama models on Amazon SageMaker AI

This post is co-written with Sunaina Kavi, AI/ML Product Manager at Omada Health. Omada Health,…

6 hours ago

Anthropic launches Cowork, a Claude Desktop agent that works in your files — no coding required

Anthropic released Cowork on Monday, a new AI agent capability that extends the power of…

7 hours ago

New Proposed Legislation Would Let Self-Driving Cars Operate in New York State

New York governor Kathy Hochul says she will propose a new law allowing limited autonomous…

7 hours ago

From brain scans to alloys: Teaching AI to make sense of complex research data

Artificial intelligence (AI) is increasingly used to analyze medical images, materials data and scientific measurements,…

7 hours ago