Beyond Sensor Data: Foundation Models of Behavioral Data from Wearables Improve Health Predictions
Wearable devices record physiological and behavioral signals that can improve health predictions. While foundation models are increasingly used for such predictions, they have been primarily applied to low-level sensor data, despite behavioral data often being more informative due to their alignment with physiologically relevant timescales and quantities. We develop foundation models of such behavioral signals using over 2.5B hours of wearable data from 162K individuals, systematically optimizing architectures and tokenization strategies for this unique dataset. Evaluated on 57 health-related…
Increased use of sensor signals from wearable devices as rich sources of physiological data has sparked growing interest in developing health monitoring systems to identify changes in an individual’s health profile. Indeed, machine learning models for sensor signals have enabled a diverse range of healthcare related applications including early detection…
Many healthcare applications are inherently multimodal, involving several physiological signals. As sensors for these signals become more common, improving machine learning methods for multimodal healthcare data is crucial. Pretraining foundation models is a promising avenue for success. However, methods for developing foundation models in healthcare are still in early exploration…
This paper was accepted at the workshop "Learning from Time Series for Health" at NeurIPS 2022. Heart rate (HR) dynamics in response to workout intensity and duration measure key aspects of an individual’s fitness and cardiorespiratory health. Models of exercise physiology have been used to characterize cardiorespiratory fitness in well-controlled…