Categories: FAANG

CatLIP: CLIP-level Visual Recognition Accuracy with 2.7× Faster Pre-training on Web-scale Image-Text Data

Contrastive learning has emerged as a transformative method for learning effective visual representations through the alignment of image and text embeddings. However, pairwise similarity computation in contrastive loss between image and text pairs poses computational challenges. This paper presents a novel weakly supervised pre-training of vision models on web-scale image-text data. The proposed method reframes pre-training on image-text data as a classification task. Consequently, it eliminates the need for pairwise similarity computations in contrastive loss, achieving a remarkable 2.7…
AI Generated Robotic Content

Recent Posts

Flux Krea Dev is hands down the best model on the planet right now

I started with trying to recreate SD3 style glitches but ended up discovering this is…

23 hours ago

Building a Transformer Model for Language Translation

This post is divided into six parts; they are: • Why Transformer is Better than…

23 hours ago

Peacock Feathers Are Stunning. They Can Also Emit Laser Beams

Scientists hope their plumage project could someday lead to biocompatible lasers that could safely be…

24 hours ago

Pirate VFX Breakdown | Made almost exclusively with SDXL and Wan!

In the past weeks, I've been tweaking Wan to get really good at video inpainting.…

2 days ago

Try Deep Think in the Gemini app

Deep Think utilizes extended, parallel thinking and novel reinforcement learning techniques for significantly improved problem-solving.

2 days ago

Introducing Amazon Bedrock AgentCore Browser Tool

At AWS Summit New York City 2025, Amazon Web Services (AWS) announced the preview of…

2 days ago