Categories: FAANG

Classifier-Free Guidance Is a Predictor-Corrector

This paper was accepted at the Mathematics of Modern Machine Learning (M3L) Workshop at NeurIPS 2024.
We investigate the unreasonable effectiveness of classifier-free guidance (CFG).
CFG is the dominant method of conditional sampling for text-to-image diffusion models, yet
unlike other aspects of diffusion, it remains on shaky theoretical footing. In this paper, we disprove common misconceptions, by showing that CFG interacts differently with DDPM and DDIM, and neither sampler with CFG generates the gamma-powered distribution.
Then, we clarify the behavior of CFG by showing that it is a kind…
AI Generated Robotic Content

Recent Posts

A Complete Guide to Matrices for Machine Learning with Python

Matrices are a key concept not only in linear algebra but also with regard to…

13 hours ago

An Efficient and Streaming Audio Visual Active Speaker Detection System

This paper delves into the challenging task of Active Speaker Detection (ASD), where the system…

13 hours ago

Benchmarking Amazon Nova and GPT-4o models with FloTorch

Based on original post by Dr. Hemant Joshi, CTO, FloTorch.ai A recent evaluation conducted by…

13 hours ago

How Google Cloud measures its climate impact through Life Cycle Assessment (LCA)

As AI creates opportunities for business growth and societal benefits, we’re working to reduce their…

13 hours ago

Sony testing AI to drive PlayStation characters

PlayStation characters may one day engage you in theoretically endless conversations, if a new internal…

14 hours ago

15-inch MacBook Air (M4, 2025) Review: Bluer and Better

The latest 15-inch MacBook Air is bluer and better than ever before—and it dropped in…

14 hours ago