Categories: FAANG

CLIP-UP: A Simple and Efficient Mixture-of-Experts CLIP Training Recipe with Sparse Upcycling

Mixture-of-Experts (MoE) models are crucial for scaling model capacity while controlling inference costs. While integrating MoE into multimodal models like CLIP improves performance, training these models is notoriously challenging and expensive. We propose CLIP-Upcycling (CLIP-UP), an efficient alternative training strategy that converts a pre-trained dense CLIP model into a sparse MoE architecture. Through extensive experimentation with various settings and auxiliary losses, we demonstrate that CLIP-UP significantly reduces training complexity and cost. Remarkably, our sparse CLIP B/16…
AI Generated Robotic Content

Recent Posts

Teaching the model: Designing LLM feedback loops that get smarter over time

How to close the loop between user behavior and LLM performance, and why human-in-the-loop systems…

19 hours ago

I Tried the Best At-Home Pet DNA Test Kits on My Two Cats (2025)

I sent my cats' saliva to the lab to get health and genetic insights sent…

19 hours ago

Wan LoRa that creates hyper-realistic people just got an update

The Instagirl Wan LoRa was just updated to v2.3. It was retrained to be better…

2 days ago

Vibe Coding is Shoot-and-Forget Coding

TL;DR Vibe coding is great for quick hacks; lasting software still needs real engineers. Vibe…

2 days ago

Scaling On-Prem Security at Palantir

How Insight, Foundry & Apollo Keep Thousands of Servers in CheckIntroductionWhen it comes to Palantir’s on-premises…

2 days ago

Introducing Amazon Bedrock AgentCore Gateway: Transforming enterprise AI agent tool development

To fulfill their tasks, AI Agents need access to various capabilities including tools, data stores,…

2 days ago