Categories: FAANG

CLIP-UP: A Simple and Efficient Mixture-of-Experts CLIP Training Recipe with Sparse Upcycling

Mixture-of-Experts (MoE) models are crucial for scaling model capacity while controlling inference costs. While integrating MoE into multimodal models like CLIP improves performance, training these models is notoriously challenging and expensive. We propose CLIP-Upcycling (CLIP-UP), an efficient alternative training strategy that converts a pre-trained dense CLIP model into a sparse MoE architecture. Through extensive experimentation with various settings and auxiliary losses, we demonstrate that CLIP-UP significantly reduces training complexity and cost. Remarkably, our sparse CLIP B/16…
AI Generated Robotic Content

Recent Posts

Qwen Image Edit 2511 — Coming next week

submitted by /u/Queasy-Carrot-7314 [link] [comments]

20 hours ago

BERT Models and Its Variants

This article is divided into two parts; they are: • Architecture and Training of BERT…

20 hours ago

Lean4: How the theorem prover works and why it’s the new competitive edge in AI

Large language models (LLMs) have astounded the world with their capabilities, yet they remain plagued…

21 hours ago

13 Best MagSafe Power Banks for iPhones (2025), Tested and Reviewed

Keep your iPhone or Qi2 Android phone topped up with one of these WIRED-tested Qi2…

21 hours ago

I love Qwen

It is far more likely that a woman underwater is wearing at least a bikini…

2 days ago

100% Unemployment is Inevitable*

TL;DR AI is already raising unemployment in knowledge industries, and if AI continues progressing toward…

2 days ago