Categories: FAANG

Combining Machine Learning and Homomorphic Encryption in the Apple Ecosystem

At Apple, we believe privacy is a fundamental human right. Our work to protect user privacy is informed by a set of privacy principles, and one of those principles is to prioritize using on-device processing. By performing computations locally on a user’s device, we help minimize the amount of data that is shared with Apple or other entities. Of course, a user may request on-device experiences powered by machine learning (ML) that can be enriched by looking up global knowledge hosted on servers. To uphold our commitment to privacy while delivering these experiences, we have implemented a…
AI Generated Robotic Content

Recent Posts

An experiment with “realism” with Wan2.2 that are safe for work images

Got bored seeing the usual women pics every time I opened this sub so decided…

21 hours ago

Introducing Veo 3.1 and advanced creative capabilities

We’re rolling out significant updates to Veo that give people even more creative control.

21 hours ago

Agentic RAG for Software Testing with Hybrid Vector-Graph and Multi-Agent Orchestration

We present an approach to software testing automation using Agentic Retrieval-Augmented Generation (RAG) systems for…

21 hours ago

Transforming enterprise operations: Four high-impact use cases with Amazon Nova

Since the launch of Amazon Nova at AWS re:Invent 2024, we have seen adoption trends…

21 hours ago

The ultimate prompting guide for Veo 3.1

If a picture is worth a thousand words, a video is worth a million.  For…

21 hours ago

Anthropic is giving away its powerful Claude Haiku 4.5 AI for free to take on OpenAI

Anthropic released Claude Haiku 4.5 on Wednesday, a smaller and significantly cheaper artificial intelligence model…

22 hours ago