Categories: FAANG

Conformal Prediction via Regression-as-Classification

Conformal prediction (CP) for regression can be challenging, especially when the output distribution is heteroscedastic, multimodal, or skewed. Some of the issues can be addressed by estimating a distribution over the output, but in reality, such approaches can be sensitive to estimation error and yield unstable intervals. Here, we circumvent the challenges by converting regression to a classification problem and then use CP for classification to obtain CP sets for regression. To preserve the ordering of the continuous-output space, we design a new loss function and make necessary…
AI Generated Robotic Content

Recent Posts

Just tried animating a Pokémon TCG card with AI – Wan 2.2 blew my mind

Hey folks, I’ve been playing around with animating Pokémon cards, just for fun. Honestly I…

23 hours ago

Busted by the em dash — AI’s favorite punctuation mark, and how it’s blowing your cover

AI is brilliant at polishing and rephrasing. But like a child with glitter glue, you…

24 hours ago

Scientists Have Identified the Origin of an Extraordinarily Powerful Outer Space Radio Wave

In March 2025 the Earth was hit by a fast radio burst as energetic as…

24 hours ago

Robots can now learn to use tools—just by watching us

Despite decades of progress, most robots are still programmed for specific, repetitive tasks. They struggle…

24 hours ago

Sharing that workflow [Remake Attempt]

I took a stab at recreating that person's work but including a workflow. Workflow download…

2 days ago

SlowFast-LLaVA-1.5: A Family of Token-Efficient Video Large Language Models for Long-Form Video Understanding

We introduce SlowFast-LLaVA-1.5 (abbreviated as SF-LLaVA-1.5), a family of video large language models (LLMs) offering…

2 days ago