Categories: FAANG

Construction of Paired Knowledge Graph – Text Datasets Informed by Cyclic Evaluation

Datasets that pair Knowledge Graphs (KG) and text together (KG-T) can be used to train forward and reverse neural models that generate text from KG and vice versa. However models trained on datasets where KG and text pairs are not equivalent can suffer from more hallucination and poorer recall. In this paper, we verify this empirically by generating datasets with different levels of noise and find that noisier datasets do indeed lead to more hallucination. We argue that the ability of forward and reverse models trained on a dataset to cyclically regenerate source KG or text is a proxy for the…
AI Generated Robotic Content

Recent Posts

Spline Path Control v2 – Control the motion of anything without extra prompting! Free and Open Source

Here's v2 of a project I started a few days ago. This will probably be…

20 hours ago

STARFlow: Scaling Latent Normalizing Flows for High-resolution Image Synthesis

We present STARFlow, a scalable generative model based on normalizing flows that achieves strong performance…

20 hours ago

Cloud quantum computing: A trillion-dollar opportunity with dangerous hidden risks

GUEST: Quantum computing (QC) brings with it a mix of groundbreaking possibilities and significant risks.…

21 hours ago

Truth Social Crashes as Trump Live-Posts Iran Bombing

The social network started experiencing global outages within minutes of Donald Trump posting details of…

21 hours ago

How are these hyper-realistic celebrity mashup photos created?

What models or workflows are people using to generate these? submitted by /u/danikcara [link] [comments]

2 days ago

Beyond GridSearchCV: Advanced Hyperparameter Tuning Strategies for Scikit-learn Models

Ever felt like trying to find a needle in a haystack? That’s part of the…

2 days ago