CtrlSynth: Controllable Image-Text Synthesis for Data-Efficient Multimodal Learning
Pretraining robust vision or multimodal foundation models (e.g., CLIP) relies on large-scale datasets that may be noisy, potentially misaligned, and have long-tail distributions. Previous works have shown promising results in augmenting datasets by generating synthetic samples. However, they only support domain-specific ad hoc use cases (e.g., either image or text only, but not both), and are limited in data diversity due to a lack of fine-grained control over the synthesis process. In this paper, we design a controllable image-text synthesis pipeline, CtrlSynth, for data-efficient and robust…
The rapid progress of foundation models and large language models (LLMs) has fueled significantly improvement in the capabilities of machine learning systems that benefit from mutlimodal input data. However, existing multimodal models are predominantly built on top of pre-trained LLMs, which can limit accurate modeling of temporal dependencies across other…
While Automatic Speech Recognition (ASR) systems are widely used in many real-world applications, they often do not generalize well to new domains and need to be finetuned on data from these domains. However, target-domain data is usually not readily available in many scenarios. In this paper, we propose a new…
*=Equal Contributors Multimodal datasets are a critical component in recent breakthroughs such as Stable Diffusion and GPT-4, yet their design does not receive the same research attention as model architectures or training algorithms. To address this shortcoming in the ML ecosystem, we introduce DataComp, a testbed for dataset experiments centered…