Categories: FAANG

CtrlSynth: Controllable Image-Text Synthesis for Data-Efficient Multimodal Learning

Pretraining robust vision or multimodal foundation models (e.g., CLIP) relies on large-scale datasets that may be noisy, potentially misaligned, and have long-tail distributions. Previous works have shown promising results in augmenting datasets by generating synthetic samples. However, they only support domain-specific ad hoc use cases (e.g., either image or text only, but not both), and are limited in data diversity due to a lack of fine-grained control over the synthesis process. In this paper, we design a controllable image-text synthesis pipeline, CtrlSynth, for data-efficient and robust…
AI Generated Robotic Content

Recent Posts

10 Ways to Use Embeddings for Tabular ML Tasks

Embeddings — vector-based numerical representations of typically unstructured data like text — have been primarily…

3 mins ago

Over-Searching in Search-Augmented Large Language Models

Search-augmented large language models (LLMs) excel at knowledge-intensive tasks by integrating external retrieval. However, they…

4 mins ago

How Omada Health scaled patient care by fine-tuning Llama models on Amazon SageMaker AI

This post is co-written with Sunaina Kavi, AI/ML Product Manager at Omada Health. Omada Health,…

4 mins ago

Anthropic launches Cowork, a Claude Desktop agent that works in your files — no coding required

Anthropic released Cowork on Monday, a new AI agent capability that extends the power of…

1 hour ago

New Proposed Legislation Would Let Self-Driving Cars Operate in New York State

New York governor Kathy Hochul says she will propose a new law allowing limited autonomous…

1 hour ago

From brain scans to alloys: Teaching AI to make sense of complex research data

Artificial intelligence (AI) is increasingly used to analyze medical images, materials data and scientific measurements,…

1 hour ago