Categories: FAANG

Distillation Scaling Laws

We propose a distillation scaling law that estimates distilled model performance based on a compute budget and its allocation between the student and teacher. Our findings mitigate the risks associated with large-scale distillation by enabling compute-optimal allocation for both the teacher and student to maximize student performance. We provide compute-optimal distillation recipes for two key scenarios: when a teacher already exists, and when a teacher needs training. In settings involving many students or an existing teacher, distillation outperforms supervised learning up to a compute level…
AI Generated Robotic Content

Recent Posts

Never forget…

submitted by /u/ShadowBoxingBabies [link] [comments]

4 hours ago

A Reinforcement Learning Based Universal Sequence Design for Polar Codes

To advance Polar code design for 6G applications, we develop a reinforcement learning-based universal sequence…

4 hours ago

Democratizing business intelligence: BGL’s journey with Claude Agent SDK and Amazon Bedrock AgentCore

This post is cowritten with James Luo from BGL. Data analysis is emerging as a…

4 hours ago

An ‘Intimacy Crisis’ Is Driving the Dating Divide

In his book The Intimate Animal, sex and relationships researcher Justin Garcia says people have…

5 hours ago

New fire just dropped: ComfyUI-CacheDiT ⚡

ComfyUI-CacheDiT brings 1.4-1.6x speedup to DiT (Diffusion Transformer) models through intelligent residual caching, with zero…

1 day ago