Categories: FAANG

Divide-or-Conquer? Which Part Should You Distill Your LLM?

Recent methods have demonstrated that Large Language Models (LLMs) can solve reasoning tasks better when they are encouraged to solve subtasks of the main task first. In this paper we devise a similar strategy that breaks down reasoning tasks into a problem decomposition phase and a problem solving phase and show that the strategy is able to outperform a single stage solution. Further, we hypothesize that the decomposition should be easier to distill into a smaller model compared to the problem solving because the latter requires large amounts of domain knowledge while the former only requires…
AI Generated Robotic Content

Recent Posts

Revolutionizing Construction

How Cavanagh and Palantir Are Building Construction’s OS for the 21st CenturyEditor’s Note: This blog post…

23 hours ago

Building a voice-driven AWS assistant with Amazon Nova Sonic

As cloud infrastructure becomes increasingly complex, the need for intuitive and efficient management interfaces has…

23 hours ago

Cloud CISO Perspectives: Our 2026 Cybersecurity Forecast report

Welcome to the first Cloud CISO Perspectives for December 2025. Today, Francis deSouza, COO and…

23 hours ago

As AI Grows More Complex, Model Builders Rely on NVIDIA

Unveiling what it describes as the most capable model series yet for professional knowledge work,…

23 hours ago

How Harmonic Security improved their data-leakage detection system with low-latency fine-tuned models using Amazon SageMaker, Amazon Bedrock, and Amazon Nova Pro

This post was written with Bryan Woolgar-O’Neil, Jamie Cockrill and Adrian Cunliffe from Harmonic Security…

2 days ago