Categories: FAANG

Duo-LLM: A Framework for Studying Adaptive Computation in Large Language Models

This paper was accepted at the Efficient Natural Language and Speech Processing (ENLSP) Workshop at NeurIPS 2024.
Large Language Models (LLMs) typically generate outputs token by token using a fixed compute budget, leading to inefficient resource utilization. To address this shortcoming, recent advancements in mixture of expert (MoE) models, speculative decoding, and early exit strategies leverage the insight that computational demands can vary significantly based on the complexity and nature of the input. However, identifying optimal routing patterns for dynamic execution remains an open…
AI Generated Robotic Content

Recent Posts

Are there any open source alternatives to this?

I know there are models available that can fill in or edit parts, but I'm…

11 hours ago

The future of engineering belongs to those who build with AI, not without it

As we look ahead, the relationship between engineers and AI systems will likely evolve from…

12 hours ago

The 8 Best Handheld Vacuums, Tested and Reviewed (2025)

Lightweight, powerful, and generally inexpensive, the handheld vacuum is the perfect household helper.

12 hours ago

I really miss the SD 1.5 days

submitted by /u/Dwanvea [link] [comments]

1 day ago

Latent Bridge Matching: Jasper’s Game-Changing Approach to Image Translation

Discover how latent bridge matching, pioneered by the Jasper research team, transforms image-to-image translation with…

1 day ago

A Gentle Introduction to SHAP for Tree-Based Models

Machine learning models have become increasingly sophisticated, but this complexity often comes at the cost…

1 day ago