Categories: FAANG

Evaluating Evaluation Metrics — The Mirage of Hallucination Detection

Hallucinations pose a significant obstacle to the reliability and widespread adoption of language models, yet their accurate measurement remains a persistent challenge. While many task- and domain-specific metrics have been proposed to assess faithfulness and factuality concerns, the robustness and generalization of these metrics are still untested. In this paper, we conduct a large-scale empirical evaluation of 6 diverse sets of hallucination detection metrics across 4 datasets, 37 language models from 5 families, and 5 decoding methods. Our extensive investigation reveals concerning gaps in…
AI Generated Robotic Content

Recent Posts

10 Ways to Use Embeddings for Tabular ML Tasks

Embeddings — vector-based numerical representations of typically unstructured data like text — have been primarily…

3 hours ago

Over-Searching in Search-Augmented Large Language Models

Search-augmented large language models (LLMs) excel at knowledge-intensive tasks by integrating external retrieval. However, they…

3 hours ago

How Omada Health scaled patient care by fine-tuning Llama models on Amazon SageMaker AI

This post is co-written with Sunaina Kavi, AI/ML Product Manager at Omada Health. Omada Health,…

3 hours ago

Anthropic launches Cowork, a Claude Desktop agent that works in your files — no coding required

Anthropic released Cowork on Monday, a new AI agent capability that extends the power of…

4 hours ago

New Proposed Legislation Would Let Self-Driving Cars Operate in New York State

New York governor Kathy Hochul says she will propose a new law allowing limited autonomous…

4 hours ago

From brain scans to alloys: Teaching AI to make sense of complex research data

Artificial intelligence (AI) is increasingly used to analyze medical images, materials data and scientific measurements,…

4 hours ago