Categories: FAANG

Faster Rates for Private Adversarial Bandits

We design new differentially private algorithms for the problems of adversarial bandits and bandits with expert advice. For adversarial bandits, we give a simple and efficient conversion of any non-private bandit algorithms to private bandit algorithms. Instantiating our conversion with existing non-private bandit algorithms gives a regret upper bound of O(KTε)Oleft(frac{sqrt{KT}}{sqrt{varepsilon}}right)O(ε​KT​​), improving upon the existing upper bound O(KTlog⁡(KT)ε)Oleft(frac{sqrt{KT log(KT)}}{varepsilon}right)O(εKTlog(KT)​​) in all privacy regimes. In particular, our algorithms…
AI Generated Robotic Content

Recent Posts

Chroma Radiance, Mid training but the most aesthetic model already imo

submitted by /u/Different_Fix_2217 [link] [comments]

11 hours ago

From human clicks to machine intent: Preparing the web for agentic AI

For three decades, the web has been designed with one audience in mind: People. Pages…

12 hours ago

Best GoPro Camera (2025): Compact, Budget, Accessories

You’re an action hero, and you need a camera to match. We guide you through…

12 hours ago

What tools would you use to make morphing videos like this?

submitted by /u/nikitagent [link] [comments]

1 day ago

Bias after Prompting: Persistent Discrimination in Large Language Models

A dangerous assumption that can be made from prior work on the bias transfer hypothesis…

1 day ago

Post-Training Generative Recommenders with Advantage-Weighted Supervised Finetuning

Author: Keertana Chidambaram, Qiuling Xu, Ko-Jen Hsiao, Moumita Bhattacharya(*The work was done when Keertana interned…

1 day ago