Categories: FAANG

Faster Rates for Private Adversarial Bandits

We design new differentially private algorithms for the problems of adversarial bandits and bandits with expert advice. For adversarial bandits, we give a simple and efficient conversion of any non-private bandit algorithms to private bandit algorithms. Instantiating our conversion with existing non-private bandit algorithms gives a regret upper bound of O(KTε)Oleft(frac{sqrt{KT}}{sqrt{varepsilon}}right)O(ε​KT​​), improving upon the existing upper bound O(KTlog⁡(KT)ε)Oleft(frac{sqrt{KT log(KT)}}{varepsilon}right)O(εKTlog(KT)​​) in all privacy regimes. In particular, our algorithms…
AI Generated Robotic Content

Recent Posts

10 Ways to Use Embeddings for Tabular ML Tasks

Embeddings — vector-based numerical representations of typically unstructured data like text — have been primarily…

19 hours ago

Over-Searching in Search-Augmented Large Language Models

Search-augmented large language models (LLMs) excel at knowledge-intensive tasks by integrating external retrieval. However, they…

19 hours ago

How Omada Health scaled patient care by fine-tuning Llama models on Amazon SageMaker AI

This post is co-written with Sunaina Kavi, AI/ML Product Manager at Omada Health. Omada Health,…

19 hours ago

Anthropic launches Cowork, a Claude Desktop agent that works in your files — no coding required

Anthropic released Cowork on Monday, a new AI agent capability that extends the power of…

20 hours ago

New Proposed Legislation Would Let Self-Driving Cars Operate in New York State

New York governor Kathy Hochul says she will propose a new law allowing limited autonomous…

20 hours ago

From brain scans to alloys: Teaching AI to make sense of complex research data

Artificial intelligence (AI) is increasingly used to analyze medical images, materials data and scientific measurements,…

20 hours ago