Categories: FAANG

Faster Rates for Private Adversarial Bandits

We design new differentially private algorithms for the problems of adversarial bandits and bandits with expert advice. For adversarial bandits, we give a simple and efficient conversion of any non-private bandit algorithms to private bandit algorithms. Instantiating our conversion with existing non-private bandit algorithms gives a regret upper bound of O(KTε)Oleft(frac{sqrt{KT}}{sqrt{varepsilon}}right)O(ε​KT​​), improving upon the existing upper bound O(KTlog⁡(KT)ε)Oleft(frac{sqrt{KT log(KT)}}{varepsilon}right)O(εKTlog(KT)​​) in all privacy regimes. In particular, our algorithms…
AI Generated Robotic Content

Recent Posts

Qwen Image Edit 2511 — Coming next week

submitted by /u/Queasy-Carrot-7314 [link] [comments]

3 hours ago

BERT Models and Its Variants

This article is divided into two parts; they are: • Architecture and Training of BERT…

3 hours ago

Lean4: How the theorem prover works and why it’s the new competitive edge in AI

Large language models (LLMs) have astounded the world with their capabilities, yet they remain plagued…

4 hours ago

13 Best MagSafe Power Banks for iPhones (2025), Tested and Reviewed

Keep your iPhone or Qi2 Android phone topped up with one of these WIRED-tested Qi2…

4 hours ago

I love Qwen

It is far more likely that a woman underwater is wearing at least a bikini…

1 day ago

100% Unemployment is Inevitable*

TL;DR AI is already raising unemployment in knowledge industries, and if AI continues progressing toward…

1 day ago