Categories: FAANG

Feedback Effect in User Interaction with Intelligent Assistants: Delayed Engagement, Adaption and Drop-out

With the growing popularity of intelligent assistants (IAs), evaluating IA quality becomes an increasingly active field of research. This paper identifies and quantifies the feedback effect, a novel component in IA-user interactions: how the capabilities and limitations of the IA influence user behavior over time. First, we demonstrate that unhelpful responses from the IA cause users to delay or reduce subsequent interactions in the short term via an observational study. Next, we expand the time horizon to examine behavior changes and show that as users discover the limitations of the IA’s…
AI Generated Robotic Content

Recent Posts

A developer’s guide to Gemini Live API in Vertex AI

Give your AI apps and agents a natural, almost human-like interface, all through a single…

4 hours ago

3 Actionable AI Recommendations for Businesses in 2026

TL;DR In 2026, the businesses that win with AI will do three things differently: redesign…

1 day ago

Revolutionizing Construction

How Cavanagh and Palantir Are Building Construction’s OS for the 21st CenturyEditor’s Note: This blog post…

2 days ago

Building a voice-driven AWS assistant with Amazon Nova Sonic

As cloud infrastructure becomes increasingly complex, the need for intuitive and efficient management interfaces has…

2 days ago

Cloud CISO Perspectives: Our 2026 Cybersecurity Forecast report

Welcome to the first Cloud CISO Perspectives for December 2025. Today, Francis deSouza, COO and…

2 days ago