Categories: FAANG

FORML: Learning to Reweight Data for Fairness

Machine learning models are trained to minimize the mean loss for a single metric, and thus typically do not consider fairness and robustness. Neglecting such metrics in training can make these models prone to fairness violations when training data are imbalanced or test distributions differ. This work introduces Fairness Optimized Reweighting via Meta-Learning (FORML), a training algorithm that balances fairness and robustness with accuracy by jointly learning training sample weights and neural network parameters. The approach increases model fairness by learning to balance the contributions…
AI Generated Robotic Content

Recent Posts

Unleash the power of generative AI with Amazon Q Business: How CCoEs can scale cloud governance best practices and drive innovation

This post is co-written with Steven Craig from Hearst.  To maintain their competitive edge, organizations…

10 hours ago

Election Denial Conspiracy Theories Are Exploding on X. This Time They’re Coming From the Left

Conspiracy theories about missing votes—which are not, in fact, missing—and something being “not right” are…

11 hours ago

AI-driven mobile robots team up to tackle chemical synthesis

Researchers have developed AI-driven mobile robots that can carry out chemical synthesis research with extraordinary…

11 hours ago

Aquatic robot’s self-learning optimization enhances underwater object manipulation skills

In recent years, roboticists have introduced robotic systems that can complete missions in various environments,…

11 hours ago

Best AI Tools for Business

Overwhelmed by manual tasks and data overload? Streamline your business and boost revenue with the…

1 day ago

Building a Robust Machine Learning Pipeline: Best Practices and Common Pitfalls

In real life, the machine learning model is not a standalone object that only produces…

1 day ago