GAUDI: A Neural Architect for Immersive 3D Scene Generation
We introduce GAUDI, a generative model capable of capturing the distribution of complex and realistic 3D scenes that can be rendered immersively from a moving camera. We tackle this challenging problem with a scalable yet powerful approach, where we first optimize a latent representation that disentangles radiance fields and camera poses. This latent representation is then used to learn a generative model that enables both unconditional and conditional generation of 3D scenes. Our model generalizes previous works that focus on single objects by removing the assumption that the camera pose…
We introduce Representation Tokenizer (RepTok), a generative modeling framework that represents an image using a single continuous latent token obtained from self-supervised vision transformers. Building on a pre-trained SSL encoder, we fine-tune only the semantic token embedding and pair it with a generative decoder trained jointly using a standard flow…
Stable Virtual Camera, currently in research preview. This multi-view diffusion model transforms 2D images into immersive 3D videos with realistic depth and perspective—without complex reconstruction or scene-specific optimization. We invite the research community to explore its capabilities and contribute to its development. A virtual camera is a digital tool used…