Categories: FAANG

Generalizable Error Modeling for Human Data Annotation: Evidence from an Industry-Scale Search Data Annotation Program

Machine learning (ML) and artificial intelligence (AI) systems rely heavily on human-annotated data for training and evaluation. A major challenge in this context is the occurrence of annotation errors, as their effects can degrade model performance. This paper presents a predictive error model trained to detect potential errors in search relevance annotation tasks for three industry-scale ML applications (music streaming, video streaming, and mobile apps). Drawing on real-world data from an extensive search relevance annotation program, we demonstrate that errors can be predicted with…
AI Generated Robotic Content

Recent Posts

Chroma Radiance, Mid training but the most aesthetic model already imo

submitted by /u/Different_Fix_2217 [link] [comments]

18 hours ago

From human clicks to machine intent: Preparing the web for agentic AI

For three decades, the web has been designed with one audience in mind: People. Pages…

19 hours ago

Best GoPro Camera (2025): Compact, Budget, Accessories

You’re an action hero, and you need a camera to match. We guide you through…

19 hours ago

What tools would you use to make morphing videos like this?

submitted by /u/nikitagent [link] [comments]

2 days ago

Bias after Prompting: Persistent Discrimination in Large Language Models

A dangerous assumption that can be made from prior work on the bias transfer hypothesis…

2 days ago

Post-Training Generative Recommenders with Advantage-Weighted Supervised Finetuning

Author: Keertana Chidambaram, Qiuling Xu, Ko-Jen Hsiao, Moumita Bhattacharya(*The work was done when Keertana interned…

2 days ago