Categories: FAANG

Generating Gender Alternatives in Machine Translation

This paper was accepted at the 5th Workshop on Gender Bias in Natural Language Processing 2024.
Machine translation (MT) systems often translate terms with ambiguous gender (e.g., English term “the nurse”) into the gendered form that is most prevalent in the systems’ training data (e.g., “enfermera”, the Spanish term for a female nurse). This often reflects and perpetuates harmful stereotypes present in society. With MT user interfaces in mind that allow for resolving gender ambiguity in a frictionless manner, we study the problem of generating all grammatically correct gendered translation…
AI Generated Robotic Content

Recent Posts

A developer’s guide to Gemini Live API in Vertex AI

Give your AI apps and agents a natural, almost human-like interface, all through a single…

8 hours ago

3 Actionable AI Recommendations for Businesses in 2026

TL;DR In 2026, the businesses that win with AI will do three things differently: redesign…

1 day ago

Revolutionizing Construction

How Cavanagh and Palantir Are Building Construction’s OS for the 21st CenturyEditor’s Note: This blog post…

2 days ago

Building a voice-driven AWS assistant with Amazon Nova Sonic

As cloud infrastructure becomes increasingly complex, the need for intuitive and efficient management interfaces has…

2 days ago

Cloud CISO Perspectives: Our 2026 Cybersecurity Forecast report

Welcome to the first Cloud CISO Perspectives for December 2025. Today, Francis deSouza, COO and…

2 days ago