Categories: FAANG

Generative Modeling with Phase Stochastic Bridges

This paper introduces a novel generative modeling framework grounded in phase space dynamics, taking inspiration from the principles underlying Critically Damped Langevin Dynamics (CLD). Leveraging insights from stochastic optimal control, we construct a favorable path measure in the phase space that proves highly advantageous for generative sampling. A distinctive feature of our approach is the early-stage data prediction capability within the context of propagating generating Ordinary Differential Equations (ODEs) or Stochastic Differential Equations (SDEs) processes. This early prediction…
AI Generated Robotic Content

Recent Posts

Automated Feature Engineering in PyCaret

Automated feature engineering in

4 hours ago

Updating the Frontier Safety Framework

Our next iteration of the FSF sets out stronger security protocols on the path to…

4 hours ago

Adaptive Training Distributions with Scalable Online Bilevel Optimization

Large neural networks pretrained on web-scale corpora are central to modern machine learning. In this…

4 hours ago

Orchestrate seamless business systems integrations using Amazon Bedrock Agents

Generative AI has revolutionized technology through generating content and solving complex problems. To fully take…

4 hours ago

Helping our partners co-market faster with AI

At Google Cloud, we're deeply invested in making AI helpful to organizations everywhere — not…

4 hours ago

AMD’s Q4 revenue hits $7.66B, up 24% but stock falls

Advanced Micro Devices reported revenue of $7.658 billion for the fourth quarter, up 24% from…

5 hours ago