Categories: FAANG

GENOT: Entropic (Gromov) Wasserstein Flow Matching with Applications to Single-Cell Genomics

Single-cell genomics has significantly advanced our understanding of cellular behavior, catalyzing innovations in treatments and precision medicine. However, single-cell sequencing technologies are inherently destructive and can only measure a limited array of data modalities simultaneously. This limitation underscores the need for new methods capable of realigning cells. Optimal transport (OT) has emerged as a potent solution, but traditional discrete solvers are hampered by scalability, privacy, and out-of-sample estimation issues. These challenges have spurred the development of neural…
AI Generated Robotic Content

Recent Posts

New fire just dropped: ComfyUI-CacheDiT ⚡

ComfyUI-CacheDiT brings 1.4-1.6x speedup to DiT (Diffusion Transformer) models through intelligent residual caching, with zero…

16 hours ago

A Beginner’s Reading List for Large Language Models for 2026

  The large language models (LLMs) hype wave shows no sign of fading anytime soon:…

16 hours ago

How Clarus Care uses Amazon Bedrock to deliver conversational contact center interactions

This post was cowritten by Rishi Srivastava and Scott Reynolds from Clarus Care. Many healthcare…

16 hours ago

Build intelligent employee onboarding with Gemini Enterprise

Employee onboarding is rarely a linear process. It’s a complex web of dependencies that vary…

16 hours ago

Epstein Files Reveal Peter Thiel’s Elaborate Dietary Restrictions

The latest batch of Jeffrey Epstein files shed light on the convicted sex offender’s ties…

17 hours ago

A tiny light trap could unlock million qubit quantum computers

A new light-based breakthrough could help quantum computers finally scale up. Stanford researchers created miniature…

17 hours ago