Account plans draft assistant UX
Every year, AWS Sales personnel draft in-depth, forward looking strategy documents for established AWS customers. These documents help the AWS Sales team to align with our customer growth strategy and to collaborate with the entire sales team on long-term growth ideas for AWS customers. These documents are internally called account plans (APs). In 2024, this activity took an account manager (AM) up to 40 hours per customer. This, combined with similar time spent for support roles researching and writing the growth plans for customers on the AWS Cloud, led to significant organization overhead. To help improve this process, in October 2024 we launched an AI-powered account planning draft assistant for our sales teams, building on the success of Field Advisor, an internal sales assistant tool. This new capability uses Amazon Bedrock to help our sales teams create comprehensive and insightful APs in less time. Since its launch, thousands of sales teams have used the resulting generative AI-powered assistant to draft sections of their APs, saving time on each AP created.
In this post, we showcase how the AWS Sales product team built the generative AI account plans draft assistant.
The account plans draft assistant serves four primary use cases:
The account plan draft assistant loads when a user tries to create an AP, and users copy and paste each section they want to use in their final plan.
Our AMs report reduced time to write these documents, allowing them to focus more on high-value activities such as customer engagement and strategy development.
Here’s what some of our AMs had to say about their experience with the account plans draft assistant:
“The AI assistant saved me at least 15 hours on my latest enterprise account plan. It pulled together a great first draft, which I was then able to refine based on my own insights. This allowed me to spend more time actually engaging with my customer rather than doing research and writing.”
– Enterprise Account Manager
“As someone managing multiple mid-market accounts, I struggled to create in-depth plans for all my customers. The AI assistant now helps me rapidly generate baseline plans that I can then prioritize and customize. It’s a game-changer for serving my full portfolio of accounts.”
– Mid-market Account Manager
Amazon Q, Amazon Bedrock, and other AWS services underpin this experience, enabling us to use large language models (LLMs) and knowledge bases (KBs) to generate relevant, data-driven content for APs. Let’s explore how we built this AI assistant and some of our future plans.
When a user of the AWS internal CRM system initiates the workflow in Field Advisor, it triggers the account plan draft assistant capability through a pre-signed URL. The assistant then orchestrates a multi-source data collection process, performing web searches while also pulling account metadata from OpenSearch, Amazon DynamoDB, and Amazon Simple Storage Service (Amazon S3) storage. After analyzing and combining this data with user-uploaded documents, the assistant uses Amazon Bedrock to generate the AP. When complete, a notification chain using Amazon Simple Queue Service (Amazon SQS) and our internal notifications service API gateway begins delivering updates using Slack direct messaging and storing searchable records in OpenSearch for future reference.
The following diagram illustrates the high-level architecture of the account plans draft assistant.
We built the account plans draft assistant using the following key components:
Our account plans draft assistant uses an Amazon Bedrock out-of-the-box knowledge base management solution. Through its RAG architecture, we semantically search and use metadata filtering to retrieve relevant context from diverse sources: internal sales enablement materials, historic APs, SEC filings, news articles, executive engagements and data from our CRM systems. The connectors built into Amazon Bedrock handle data ingestion from Amazon S3, relational database management systems (RDBMS), and third-party APIs; while its KB capabilities enable us to filter and prioritize source documents when generating responses. This context-aware approach results in higher quality and more relevant content in our generated AP sections.
Security and Compliance are paramount to AWS when dealing with data regarding our customers. We use AWS IAM Identity Center for enterprise single sign-on so that only authorized users can access the account plans draft assistant. Using Field Advisor, we use various internal authorization mechanisms to help ensure that a user who’s generating APs only accesses the data that they already have access to.
We built a custom web frontend using a micro-frontend approach that integrates directly into our CRM system, allowing AMs to access the account plans draft assistant without leaving their familiar work environment. The interface allows users to select which sections of APs they want to generate, provides options for customization, and notifies users to create their APs on time through Slack.
While the account plans draft assistant has already demonstrated significant value, we’re continuing to enhance its capabilities. Our goal is to create a zero-touch account planner that sales teams can use to generate a full AP for a customer, incorporating best practices observed across our customers to provide sales teams best-in-class strategies to engage with customers. This would include:
The account plans draft assistant, powered by Amazon Bedrock, has significantly streamlined our AP process, allowing our AWS Sales teams to create higher quality APs in a fraction of the time they currently need. As we continue to refine and expand this capability, we’re excited to see how it will further enhance our ability to serve our customers and drive their success in the AWS Cloud.
If you’re interested in learning how generative AI can transform your sales function and its processes, reach out to your AWS account team to discuss how services such as Amazon Q and Amazon Bedrock can help you build similar solutions for your organization.
Anyone notice that this bill has been reintroduced? submitted by /u/Rough-Copy-5611 [link] [comments]
Be sure to check out the previous articles in this series: •
This research aims to comprehensively explore building a multimodal foundation model for egocentric video understanding.…
Training a frontier model is highly compute-intensive, requiring a distributed system of hundreds, or thousands,…
When it comes to AI, inference is where today’s generative AI models can solve real-world…
DeepCoder-14B competes with frontier models like o3 and o1—and the weights, code, and optimization platform…