The accepted papers at ICML have been published. ICML is a top Machine Learning conference, and one of the most relevant to Deep Learning, although NIPS has a longer DL tradition and ICLR, being more focused, has a much higher DL density.
I thought it would be fun to compute some stats on institutions. Armed with Jupyter Notebook and regex, we look for all of the institution mentions, add up their counts and sort. Modulo a few annoyances:
In total we get 961 institution mentions, 420 unique. The top 30 are:
#mentions institution
---------------------
44 Google
33 Microsoft
32 CMU
25 DeepMind
23 MIT
22 Berkeley
22 Stanford
16 Cambridge
16 Princeton
15 None
14 Georgia Tech
13 Oxford
11 UT Austin
10 Duke
10 Facebook
9 ETH Zurich
9 EPFL
8 Columbia
8 Harvard
8 Michigan
7 UCSD
7 IBM
7 New York
7 Peking
6 Cornell
6 Washington
6 Minnesota
5 Virginia
5 Weizmann Institute of Science
5 Microsoft / Princeton / IAS
I’m not quite sure about “None” (15) in there. It’s listed as an institution on the ICML page and I can’t tell if they have a bug or if that’s a real cool new AI institution we don’t yet know about.
To get an idea of how much of the research is done at industry, I took the counts for the largest industry labs (DeepMind, Google, Microsoft, Facebook, IBM, Disney, Amazon, Adobe) and divide by the total. We get 14%, but this doesn’t capture the looong tail. Looking through the tail, I think it’s fair to say that
about 20–25% of papers have an industry involvement.
or rather, approximately three quarters of all papers at ICML have come entirely out of Academia. Also, since DeepMind/Google are both Alphabet, we can put them together (giving 60 total), and see that
6.3% of ICML papers have a Google/DeepMind author.
It would be fun to run this analysis over time. Back when I started my PhD (~2011), industry research was not as prevalent. It was common to see in Graphics (e.g. Adobe / Disney / etc), but not as much in AI / Machine Learning. A lot of that has changed and from purely subjective observation, the industry involvement has increased dramatically. However, Academia is still doing really well and contributes a large fraction (~75%) of the papers.
cool!
EDIT 1: fixed an error where previously the Alphabet stat above read 10% because I incorrectly added the numbers of DM and Google, instead of properly collapsing them to a single Alphabet entity.
EDIT 2: some more discussion and numbers on r/ML thread too.
Understanding what's happening behind large language models (LLMs) is essential in today's machine learning landscape.
AI accelerationists have won as a consequence of the election, potentially sidelining those advocating for…
L'Oréal's first professional hair dryer combines infrared light, wind, and heat to drastically reduce your…
TL;DR A conversation with 4o about the potential demise of companies like Anthropic. As artificial…
Whether a company begins with a proof-of-concept or live deployment, they should start small, test…
Digital tools are not always superior. Here are some WIRED-tested agendas and notebooks to keep…