Categories: FAANG

Identifying Controversial Pairs in Item-to-Item Recommendations

*= Equal Contributors
Recommendation systems in large-scale online marketplaces are essential to aiding users in discovering new content. However, state-of-the-art systems for item-to-item recommendation tasks are often based on a shallow level of contextual relevance, which can make the system insufficient for tasks where item relationships are more nuanced. Contextually relevant item pairs can sometimes have problematic relationships that are confusing or even controversial to end users, and they could degrade user experiences and brand perception when recommended to users. For example, the…
AI Generated Robotic Content

Recent Posts

New fire just dropped: ComfyUI-CacheDiT ⚡

ComfyUI-CacheDiT brings 1.4-1.6x speedup to DiT (Diffusion Transformer) models through intelligent residual caching, with zero…

16 hours ago

A Beginner’s Reading List for Large Language Models for 2026

  The large language models (LLMs) hype wave shows no sign of fading anytime soon:…

16 hours ago

How Clarus Care uses Amazon Bedrock to deliver conversational contact center interactions

This post was cowritten by Rishi Srivastava and Scott Reynolds from Clarus Care. Many healthcare…

16 hours ago

Build intelligent employee onboarding with Gemini Enterprise

Employee onboarding is rarely a linear process. It’s a complex web of dependencies that vary…

16 hours ago

Epstein Files Reveal Peter Thiel’s Elaborate Dietary Restrictions

The latest batch of Jeffrey Epstein files shed light on the convicted sex offender’s ties…

17 hours ago

A tiny light trap could unlock million qubit quantum computers

A new light-based breakthrough could help quantum computers finally scale up. Stanford researchers created miniature…

17 hours ago