Categories: FAANG

Improvements to Embedding-Matching Acoustic-to-Word ASR Using Multiple-Hypothesis Pronunciation-Based Embeddings

In embedding-matching acoustic-to-word (A2W) ASR, every word in the vocabulary is represented by a fixed-dimension embedding vector that can be added or removed independently of the rest of the system. The approach is potentially an elegant solution for the dynamic out-of-vocabulary (OOV) words problem, where speaker- and context-dependent named entities like contact names must be incorporated into the ASR on-the-fly for every speech utterance at testing time. Challenges still remain, however, in improving the overall accuracy of embedding-matching A2W. In this paper, we contribute two methods…
AI Generated Robotic Content

Recent Posts

AI, Light, and Shadow: Jasper’s New Research Powers More Realistic Imagery

Jasper Research Lab’s new shadow generation research and model enable brands to create more photorealistic…

58 mins ago

Gemini 2.0 is now available to everyone

We’re announcing new updates to Gemini 2.0 Flash, plus introducing Gemini 2.0 Flash-Lite and Gemini…

59 mins ago

Reinforcement Learning for Long-Horizon Interactive LLM Agents

Interactive digital agents (IDAs) leverage APIs of stateful digital environments to perform tasks in response…

59 mins ago

Trellix lowers cost, increases speed, and adds delivery flexibility with cost-effective and performant Amazon Nova Micro and Amazon Nova Lite models

This post is co-written with Martin Holste from Trellix.  Security teams are dealing with an…

59 mins ago

Designing sustainable AI: A deep dive into TPU efficiency and lifecycle emissions

As AI continues to unlock new opportunities for business growth and societal benefits, we’re working…

59 mins ago

NOAA Employees Told to Pause Work With ‘Foreign Nationals’

An internal email obtained by WIRED shows that NOAA workers received orders to pause “ALL…

2 hours ago