Categories: FAANG

Improving Human Annotation Effectiveness for Fact Collection by Identifying the Most Relevant Answers

This paper was accepted at the Workshops on Data Science with Human in the Loop at EMNLP 2022
Identifying and integrating missing facts is a crucial task for knowledge graph completion to ensure robustness towards downstream applications such as question answering. Adding new facts to a knowledge graph in real world system often involves human verification effort, where candidate facts are verified for accuracy by human annotators. This process is labor-intensive, time-consuming, and inefficient since only a small number of missing facts can be identified. This paper proposes a simple but…
AI Generated Robotic Content

Recent Posts

Chroma Radiance, Mid training but the most aesthetic model already imo

submitted by /u/Different_Fix_2217 [link] [comments]

9 hours ago

From human clicks to machine intent: Preparing the web for agentic AI

For three decades, the web has been designed with one audience in mind: People. Pages…

10 hours ago

Best GoPro Camera (2025): Compact, Budget, Accessories

You’re an action hero, and you need a camera to match. We guide you through…

10 hours ago

What tools would you use to make morphing videos like this?

submitted by /u/nikitagent [link] [comments]

1 day ago

Bias after Prompting: Persistent Discrimination in Large Language Models

A dangerous assumption that can be made from prior work on the bias transfer hypothesis…

1 day ago

Post-Training Generative Recommenders with Advantage-Weighted Supervised Finetuning

Author: Keertana Chidambaram, Qiuling Xu, Ko-Jen Hsiao, Moumita Bhattacharya(*The work was done when Keertana interned…

1 day ago