Categories: FAANG

Improving Human Annotation Effectiveness for Fact Collection by Identifying the Most Relevant Answers

This paper was accepted at the Workshops on Data Science with Human in the Loop at EMNLP 2022
Identifying and integrating missing facts is a crucial task for knowledge graph completion to ensure robustness towards downstream applications such as question answering. Adding new facts to a knowledge graph in real world system often involves human verification effort, where candidate facts are verified for accuracy by human annotators. This process is labor-intensive, time-consuming, and inefficient since only a small number of missing facts can be identified. This paper proposes a simple but…
AI Generated Robotic Content

Recent Posts

SamsungCam UltraReal – Qwen-Image LoRA

Hey everyone, Just dropped the first version of a LoRA I've been working on: SamsungCam…

3 hours ago

40 Best Early Amazon Prime Day Deals on WIRED-Tested Gear (2025)

Amazon Prime Day is back, starting on October 7, but we’ve already found good deals…

4 hours ago

These little robots literally walk on water

HydroSpread, a breakthrough fabrication method, lets scientists build ultrathin soft robots directly on water. These…

4 hours ago

VHS filters work great with AI footage (WAN 2.2 + NTSC-RS)

submitted by /u/mtrx3 [link] [comments]

1 day ago

Algorithm Showdown: Logistic Regression vs. Random Forest vs. XGBoost on Imbalanced Data

Imbalanced datasets are a common challenge in machine learning.

1 day ago

Unlock global AI inference scalability using new global cross-Region inference on Amazon Bedrock with Anthropic’s Claude Sonnet 4.5

Organizations are increasingly integrating generative AI capabilities into their applications to enhance customer experiences, streamline…

1 day ago