Categories: FAANG

Integrating Categorical Features in End-To-End ASR

All-neural, end-to-end ASR systems gained rapid interest from the speech recognition community. Such systems convert speech input to text units using a single trainable neural network model. E2E models require large amounts of paired speech text data that is expensive to obtain. The amount of data available varies across different languages and dialects. It is critical to make use of all these data so that both low resource languages and high resource languages can be improved. When we want to deploy an ASR system for a new application domain, the amount of domain specific training data is…
AI Generated Robotic Content

Recent Posts

New fire just dropped: ComfyUI-CacheDiT ⚡

ComfyUI-CacheDiT brings 1.4-1.6x speedup to DiT (Diffusion Transformer) models through intelligent residual caching, with zero…

13 hours ago

A Beginner’s Reading List for Large Language Models for 2026

  The large language models (LLMs) hype wave shows no sign of fading anytime soon:…

13 hours ago

How Clarus Care uses Amazon Bedrock to deliver conversational contact center interactions

This post was cowritten by Rishi Srivastava and Scott Reynolds from Clarus Care. Many healthcare…

13 hours ago

Build intelligent employee onboarding with Gemini Enterprise

Employee onboarding is rarely a linear process. It’s a complex web of dependencies that vary…

13 hours ago

Epstein Files Reveal Peter Thiel’s Elaborate Dietary Restrictions

The latest batch of Jeffrey Epstein files shed light on the convicted sex offender’s ties…

14 hours ago

A tiny light trap could unlock million qubit quantum computers

A new light-based breakthrough could help quantum computers finally scale up. Stanford researchers created miniature…

14 hours ago