Categories: FAANG

Joint Speech Transcription and Translation: Pseudo-Labeling with Out-of-Distribution Data

Self-training has been shown to be helpful in addressing data scarcity for many domains, including vision, speech, and language. Specifically, self-training, or pseudo-labeling, labels unsupervised data and adds that to the training pool. In this work, we investigate and use pseudo-labeling for a recently proposed novel setup: joint transcription and translation of speech, which suffers from an absence of sufficient parallel data resources. We show that under such data-deficient circumstances, the unlabeled data can significantly vary in domain from the supervised data, which results in…
AI Generated Robotic Content

Recent Posts

Pirate VFX Breakdown | Made almost exclusively with SDXL and Wan!

In the past weeks, I've been tweaking Wan to get really good at video inpainting.…

8 hours ago

Try Deep Think in the Gemini app

Deep Think utilizes extended, parallel thinking and novel reinforcement learning techniques for significantly improved problem-solving.

8 hours ago

Introducing Amazon Bedrock AgentCore Browser Tool

At AWS Summit New York City 2025, Amazon Web Services (AWS) announced the preview of…

8 hours ago

New vision model from Cohere runs on two GPUs, beats top-tier VLMs on visual tasks

Cohere's Command A Vision can read graphs and PDFs to make enterprise research richer and…

9 hours ago

Anthropic Revokes OpenAI’s Access to Claude

OpenAI lost access to the Claude API this week after Anthropic claimed the company was…

9 hours ago

New AI tool learns to read medical images with far less data

A new artificial intelligence (AI) tool could make it much easier—and cheaper—for doctors and researchers…

9 hours ago