Categories: FAANG

KG-TRICK: Unifying Textual and Relational Information Completion of Knowledge for Multilingual Knowledge Graphs

Multilingual knowledge graphs (KGs) provide high-quality relational and textual information for various NLP applications, but they are often incomplete, especially in non-English languages. Previous research has shown that combining information from KGs in different languages aids either Knowledge Graph Completion (KGC), the task of predicting missing relations between entities, or Knowledge Graph Enhancement (KGE), the task of predicting missing textual information for entities. Although previous efforts have considered KGC and KGE as independent tasks, we hypothesize that they are…
AI Generated Robotic Content

Recent Posts

Qwen Image Edit 2511 — Coming next week

submitted by /u/Queasy-Carrot-7314 [link] [comments]

13 hours ago

BERT Models and Its Variants

This article is divided into two parts; they are: • Architecture and Training of BERT…

13 hours ago

Lean4: How the theorem prover works and why it’s the new competitive edge in AI

Large language models (LLMs) have astounded the world with their capabilities, yet they remain plagued…

14 hours ago

13 Best MagSafe Power Banks for iPhones (2025), Tested and Reviewed

Keep your iPhone or Qi2 Android phone topped up with one of these WIRED-tested Qi2…

14 hours ago

I love Qwen

It is far more likely that a woman underwater is wearing at least a bikini…

2 days ago

100% Unemployment is Inevitable*

TL;DR AI is already raising unemployment in knowledge industries, and if AI continues progressing toward…

2 days ago