Categories: FAANG

KPConvX: Modernizing Kernel Point Convolution with Kernel Attention

In the field of deep point cloud understanding, KPConv is a unique architecture that uses kernel points to locate convolutional weights in space, instead of relying on Multi-Layer Perceptron (MLP) encodings. While it initially achieved success, it has since been surpassed by recent MLP networks that employ updated designs and training strategies. Building upon the kernel point principle, we present two novel designs: KPConvD (depthwise KPConv), a lighter design that enables the use of deeper architectures, and KPConvX, an innovative design that scales the depthwise convolutional weights of…
AI Generated Robotic Content

Recent Posts

Are there any open source alternatives to this?

I know there are models available that can fill in or edit parts, but I'm…

17 hours ago

The future of engineering belongs to those who build with AI, not without it

As we look ahead, the relationship between engineers and AI systems will likely evolve from…

18 hours ago

The 8 Best Handheld Vacuums, Tested and Reviewed (2025)

Lightweight, powerful, and generally inexpensive, the handheld vacuum is the perfect household helper.

18 hours ago

I really miss the SD 1.5 days

submitted by /u/Dwanvea [link] [comments]

2 days ago

Latent Bridge Matching: Jasper’s Game-Changing Approach to Image Translation

Discover how latent bridge matching, pioneered by the Jasper research team, transforms image-to-image translation with…

2 days ago

A Gentle Introduction to SHAP for Tree-Based Models

Machine learning models have become increasingly sophisticated, but this complexity often comes at the cost…

2 days ago