Categories: FAANG

Learning Language-Specific Layers for Multilingual Machine Translation

Multilingual Machine Translation promises to improve translation quality between non-English languages. This is advantageous for several reasons, namely lower latency (no need to translate twice), and reduced error cascades (e.g. , avoiding losing gender and formality information when translating through English). On the downside, adding more languages reduces model capacity per language, which is usually countered by increasing the overall model size, making training harder and inference slower. In this work, we introduce Language-Specific Transformer Layers (LSLs), which allow us to increase…
AI Generated Robotic Content

Recent Posts

Can “Safe AI” Companies Survive in an Unrestrained AI Landscape?

TL;DR A conversation with 4o about the potential demise of companies like Anthropic. As artificial…

9 hours ago

Large language overkill: How SLMs can beat their bigger, resource-intensive cousins

Whether a company begins with a proof-of-concept or live deployment, they should start small, test…

10 hours ago

14 Best Planners: Weekly and Daily Notebooks & Accessories (2024)

Digital tools are not always superior. Here are some WIRED-tested agendas and notebooks to keep…

10 hours ago

5 Tools for Visualizing Machine Learning Models

Machine learning (ML) models are built upon data.

1 day ago

AI Systems Governance through the Palantir Platform

Editor’s note: This is the second post in a series that explores a range of…

1 day ago

Introducing Configurable Metaflow

David J. Berg*, David Casler^, Romain Cledat*, Qian Huang*, Rui Lin*, Nissan Pow*, Nurcan Sonmez*,…

1 day ago