Categories: FAANG

Local Mechanisms of Compositional Generalization in Conditional Diffusion

Conditional diffusion models appear capable of compositional generalization, i.e., generating convincing samples for out-of-distribution combinations of conditioners, but the mechanisms underlying this ability remain unclear. To make this concrete, we study length generalization, the ability to generate images with more objects than seen during training. In a controlled CLEVR setting (Johnson et al., 2017), we find that length generalization is achievable in some cases but not others, suggesting that models only sometimes learn the underlying compositional structure. We then investigate…
AI Generated Robotic Content

Recent Posts

New fire just dropped: ComfyUI-CacheDiT ⚡

ComfyUI-CacheDiT brings 1.4-1.6x speedup to DiT (Diffusion Transformer) models through intelligent residual caching, with zero…

15 hours ago

A Beginner’s Reading List for Large Language Models for 2026

  The large language models (LLMs) hype wave shows no sign of fading anytime soon:…

15 hours ago

How Clarus Care uses Amazon Bedrock to deliver conversational contact center interactions

This post was cowritten by Rishi Srivastava and Scott Reynolds from Clarus Care. Many healthcare…

15 hours ago

Build intelligent employee onboarding with Gemini Enterprise

Employee onboarding is rarely a linear process. It’s a complex web of dependencies that vary…

15 hours ago

Epstein Files Reveal Peter Thiel’s Elaborate Dietary Restrictions

The latest batch of Jeffrey Epstein files shed light on the convicted sex offender’s ties…

16 hours ago

A tiny light trap could unlock million qubit quantum computers

A new light-based breakthrough could help quantum computers finally scale up. Stanford researchers created miniature…

16 hours ago