Categories: FAANG

Low-Rank Optimal Transport: Approximation, Statistics and Debiasing

The matching principles behind optimal transport (OT) play an increasingly important role in machine learning, a trend which can be observed when OT is used to disambiguate datasets in applications (e.g. single-cell genomics) or used to improve more complex methods (e.g. balanced attention in transformers or self-supervised learning). To scale to more challenging problems, there is a growing consensus that OT requires solvers that can operate on millions, not thousands, of points. The low-rank optimal transport (LOT) approach advocated in (Scetbon et al., 2021) holds several promises in that…
AI Generated Robotic Content

Recent Posts

AI, Light, and Shadow: Jasper’s New Research Powers More Realistic Imagery

Jasper Research Lab’s new shadow generation research and model enable brands to create more photorealistic…

4 hours ago

Gemini 2.0 is now available to everyone

We’re announcing new updates to Gemini 2.0 Flash, plus introducing Gemini 2.0 Flash-Lite and Gemini…

4 hours ago

Reinforcement Learning for Long-Horizon Interactive LLM Agents

Interactive digital agents (IDAs) leverage APIs of stateful digital environments to perform tasks in response…

4 hours ago

Trellix lowers cost, increases speed, and adds delivery flexibility with cost-effective and performant Amazon Nova Micro and Amazon Nova Lite models

This post is co-written with Martin Holste from Trellix.  Security teams are dealing with an…

4 hours ago

Designing sustainable AI: A deep dive into TPU efficiency and lifecycle emissions

As AI continues to unlock new opportunities for business growth and societal benefits, we’re working…

4 hours ago

NOAA Employees Told to Pause Work With ‘Foreign Nationals’

An internal email obtained by WIRED shows that NOAA workers received orders to pause “ALL…

5 hours ago