Categories: FAANG

MARRS: Multimodal Reference Resolution System

*= All authors listed contributed equally to this work
Successfully handling context is essential for any dialog understanding task. This context maybe be conversational (relying on previous user queries or system responses), visual (relying on what the user sees, for example, on their screen), or background (based on signals such as a ringing alarm or playing music). In this work, we present an overview of MARRS, or Multimodal Reference Resolution System, an on-device framework within a Natural Language Understanding system, responsible for handling conversational, visual and background…
AI Generated Robotic Content

Recent Posts

Can “Safe AI” Companies Survive in an Unrestrained AI Landscape?

TL;DR A conversation with 4o about the potential demise of companies like Anthropic. As artificial…

6 hours ago

Large language overkill: How SLMs can beat their bigger, resource-intensive cousins

Whether a company begins with a proof-of-concept or live deployment, they should start small, test…

7 hours ago

14 Best Planners: Weekly and Daily Notebooks & Accessories (2024)

Digital tools are not always superior. Here are some WIRED-tested agendas and notebooks to keep…

7 hours ago

5 Tools for Visualizing Machine Learning Models

Machine learning (ML) models are built upon data.

1 day ago

AI Systems Governance through the Palantir Platform

Editor’s note: This is the second post in a series that explores a range of…

1 day ago

Introducing Configurable Metaflow

David J. Berg*, David Casler^, Romain Cledat*, Qian Huang*, Rui Lin*, Nissan Pow*, Nurcan Sonmez*,…

1 day ago