Categories: FAANG

MIA-Bench: Towards Better Instruction Following Evaluation of Multimodal LLMs

We introduce MIA-Bench, a new benchmark designed to evaluate multimodal large language models (MLLMs) on their ability to strictly adhere to complex instructions. Our benchmark comprises a diverse set of 400 image-prompt pairs, each crafted to challenge the models’ compliance with layered instructions in generating accurate responses that satisfy specific requested patterns. Evaluation results from a wide array of state-of-the-art MLLMs reveal significant variations in performance, highlighting areas for improvement in instruction fidelity. Additionally, we create extra training data and…
AI Generated Robotic Content

Recent Posts

Word Embeddings for Tabular Data Feature Engineering

It would be difficult to argue that word embeddings — dense vector representations of words…

1 hour ago

AXLearn: Modular Large Model Training on Heterogeneous Infrastructure

We design and implement AXLearn, a production deep learning system that facilitates scalable and high-performance…

1 hour ago

Advanced fine-tuning methods on Amazon SageMaker AI

This post provides the theoretical foundation and practical insights needed to navigate the complexities of…

1 hour ago

How Jina AI built its 100-billion-token web grounding system with Cloud Run GPUs

Editor’s note: The Jina AI Reader is a specialized tool that transforms raw web content…

1 hour ago

A Gaming GPU Helps Crack the Code on a Thousand-Year Cultural Conversation

Ceramics — the humble mix of earth, fire and artistry — have been part of…

1 hour ago