MM-Ego: Towards Building Egocentric Multimodal LLMs
This research aims to comprehensively explore building a multimodal foundation model for egocentric video understanding. To achieve this goal, we work on three fronts. First, as there is a lack of QA data for egocentric video understanding, we automatically generate 7M high-quality QA samples for egocentric videos ranging from 30 seconds to one hour long in Ego4D based on human-annotated data. This is one of the largest egocentric QA datasets. Second, we contribute a challenging egocentric QA benchmark with 629 videos and 7,026 questions to evaluate the models’ ability in recognizing and…
Humanoid robots have significant gaps in their sensing and perception, making it hard to perform motion planning in dense environments. To address this, we introduce ARMOR, a novel egocentric perception system that integrates both hardware and software, specifically incorporating wearable-like depth sensors for humanoid robots. Our distributed perception approach enhances…
One of the most promising approaches to teaching robots how to complete manual tasks such as cleaning dishes or preparing food is known as imitation learning. End-to-end imitation learning typically entails training a deep learning algorithm on raw videos, images and/or motion capture data of humans completing manual tasks.
Training manipulation policies for humanoid robots with diverse data enhances their robustness and generalization across tasks and platforms. However, learning solely from robot demonstrations is labor-intensive, requiring expensive tele-operated data collection which is difficult to scale. This paper investigates a more scalable data source, egocentric human demonstrations, to serve as…