Categories: FAANG

Multimodal Autoregressive Pre-Training of Large Vision Encoders

*Equal Contributors
A dominant paradigm in large multimodal models is to pair a large language de- coder with a vision encoder. While it is well-known how to pre-train and tune language decoders for multimodal tasks, it is less clear how the vision encoder should be pre-trained. A de facto standard is to pre-train the vision encoder with a discriminative objective, such as contrastive loss. This causes a mismatch between pre-training and the generative autoregressive downstream task. At the same time, following their success in the language domain, autoregressive image models have been shown…
AI Generated Robotic Content

Recent Posts

Qwen Image Edit 2511 — Coming next week

submitted by /u/Queasy-Carrot-7314 [link] [comments]

4 hours ago

BERT Models and Its Variants

This article is divided into two parts; they are: • Architecture and Training of BERT…

4 hours ago

Lean4: How the theorem prover works and why it’s the new competitive edge in AI

Large language models (LLMs) have astounded the world with their capabilities, yet they remain plagued…

5 hours ago

13 Best MagSafe Power Banks for iPhones (2025), Tested and Reviewed

Keep your iPhone or Qi2 Android phone topped up with one of these WIRED-tested Qi2…

5 hours ago

I love Qwen

It is far more likely that a woman underwater is wearing at least a bikini…

1 day ago

100% Unemployment is Inevitable*

TL;DR AI is already raising unemployment in knowledge industries, and if AI continues progressing toward…

1 day ago