Categories: FAANG

NeILF++: Inter-Reflectable Light Fields for Geometry and Material Estimation

We present a novel differentiable rendering framework for joint geometry, material, and lighting estimation from multi-view images. In contrast to previous methods which assume a simplified environment map or co-located flashlights, in this work, we formulate the lighting of a static scene as one neural incident light field (NeILF) and one outgoing neural radiance field (NeRF). The key insight of the proposed method is the union of the incident and outgoing light fields through physically-based rendering and inter-reflections between surfaces, making it possible to disentangle the scene…
AI Generated Robotic Content

Recent Posts

Never forget…

submitted by /u/ShadowBoxingBabies [link] [comments]

4 hours ago

A Reinforcement Learning Based Universal Sequence Design for Polar Codes

To advance Polar code design for 6G applications, we develop a reinforcement learning-based universal sequence…

4 hours ago

Democratizing business intelligence: BGL’s journey with Claude Agent SDK and Amazon Bedrock AgentCore

This post is cowritten with James Luo from BGL. Data analysis is emerging as a…

4 hours ago

An ‘Intimacy Crisis’ Is Driving the Dating Divide

In his book The Intimate Animal, sex and relationships researcher Justin Garcia says people have…

5 hours ago

New fire just dropped: ComfyUI-CacheDiT ⚡

ComfyUI-CacheDiT brings 1.4-1.6x speedup to DiT (Diffusion Transformer) models through intelligent residual caching, with zero…

1 day ago